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S T E A D Y - S T A T E  F R I C T I O N A L  H E A T  G E N E R A T I O N  ON A X I S Y M M E T R I C  

S L I D I N G  C O N T A C T  OF A T H E R M O S E N S I T I V E  S P H E R E  

A N D  A F I X E D ,  T H E R M A L L Y  I N S U L A T E D  BASE 

It. D.  Kulchyt sky -Zh iha i lo  and A. A.  E v t u s h e n k o  I UDC 539.3 

An approach to the construction of a calculation scheme for finding the contact area dimensions, 
pressure, and temperature for a thermosensitive sphere sliding along a fized, thermally isolated 
base is suggested. The well-known solution for the constant thermal properties of the sphere 
material follows as a particular case of the solution obtained. 

I n t r o d u c t i o n .  The axisymmetric contact problem taking into account the steady-state heat release 
due to sliding friction was studied in [1-4]. In this case, a number of new (compared to the Hertz problem [5]) 
features in the behavior of the main contact characteristics was revealed. Thus, the limiting (critical) radius 
of the contact area with infinite increase in the pressing force was obtained numerically in [1] and analytically 
in [2]. The relation between this value and the onset of thermoelastic instability on the contact was found. 

All the solutions mentioned above are obtained under the assumption of constant thermal properties 
of the interacting bodies. However, modern frictional materials operating at high contact pressures and 
temperatures are mostly thermosensitive, i.e., they have temperature-dependent thermM conductivities, 
specific heats, and linear thermal expansion coefficients. Methods of solution have mainly been developed 
for the temperature problems of the theory of friction [6-8]. The solutions of the corresponding problems of 
thermal elasticity are sparse [9], and for contact problems there are no solutions at all. 

1. Fo rmula t ion  of t h e  P rob l em.  Let an elastic sphere of radius R be pressed by force P into a 
fixed base moving with velocity v. Because of friction in the contact area, heat is generated, which leads to 
formation of a temperature field and attendant thermal deformations. The latter have a substantial effect on 
the distribution of the contact pressure p. 

It is assumed that: 
(I) Vertical displacements of the sphere are independent of tangential stresses on the contact area, i.e., 

the friction affects the contact-area dimensions only through the generation of heat. 
(2) The entire surface of the base and the free part of the sphere surface are thermally insulated. The 

intensity of the frictional heat flux q, directed to heating the sphere in the contact area, is proportional to the 
specific power of friction: 

q = fvp  (1.1) 

(f  is the coefficient of friction). The time of heating of the sphere by the heat flux (1.1) is sufficient for the 
temperature field to reach a steady state; 

(3) The material of the sphere is thermosensitive: its coefficients of heat transfer K and linear thermal 
expansion a are functions of the temperature T of the form 

I f (T)  = KoK*(T), a(T) = aoa*(T), (1.2) 
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where K0 = K(To), ao = a(To), and To = 250C is the temperature of the sphere points remote from the 
interaction region. 

On the basis of assumptions 1 and 2 the problem will be considered in an axisymmetric formulation. 
We choose the origin of cylindrical coordinates r~z at the center of the contact circle of radius a directing 
the z axis inside the sphere. Assuming additionally that a << R, we formulate the boundary problems of the 
thermal conductivity and thermal elasticity for a sphere for a half-space, according to the Hertz approach [5]. 

2. The  The r ma l - Co nduc t i v i t y  Prob lem.  The temperature field T occurring as a result of heating 
of the thermosensitive body by the heat flux (1.1) is found from the solution of the nonlinear equation of 
thermal conductivity 

p Op + K(T) = 0  (0 ~< p,(  < eo), (2.1) 

subject to the boundary conditions 

~ ~ = -i~ap(p)~(1 - p), 0 .< p < ~; (2.2) K 

OT OT VI'- f i  O, - - ~ 0  for + (2_ . . oo ,  (2.3) T--. To, Op O( 

where p = r/a, ( = z/a, and H(.) is a Heaviside unit function. 
Using the Kirchhoff transform 

T 

4(T) - f K*(T') dT' (2.4) 
To 

in Eqs. (2.1) and conditions (2.2) and (2.3) yields 

v 2 4  = o, 0 ,< p, ( < co; (2.5) 

04[ _ f va 
0-( r Ko p(p)H(1 - p), 0 ~< p < oo; (2.6) 

r --* O, 0 4  04 o~-*0 ,  o ( - , 0  for V ~ + ( 2 - , o o ,  (2.7) 

where V 2 = 02lOp 2 + p-lO/Op + 02/0( 2 is the Laplacian. 
The solution of Eq. (2.5) satisfying conditions (2.6) and (2.7) has the form [4] 

oo 1 

4(p, ~)= ~ fe-'%(md~ f xp(x)J0(=~) ~ ,  (2.8) 
0 0 

where J0(') is a zeroth-order Bessel function of the first kind. 
We perform integration of [10] 

- Je-<Jo(~p)Jo(sz) d~ = 2 K[A(p, ( ,  z)]  . (2.9)  
~(~ + (p + x)~' 0 

OO 

d je_,r s -  = _ 2  (E[A(p,(,z)] (( > 0), (2.10) 

where A(p, (, •) = 2k/px/(C 2 + (p + x)2), K(.) and E(.) are complete elliptical integrals of the first and second 
kinds, respectively. Taking into account (2.9) and (2.10), for the function 4 (2.8) and its partial derivative 
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0~/c9( we obtain 

2Ira ) 
~ ( P ' r  rK0 xp(x) K[A(p,r dx; (2.11) 

o + (p + 

Or r 2fva 1[ 
0----(--- = -rK-'--oJXP(X) r162 dz (~ >0) .  (2.12) 

o ~/C 2 + (P + x)2[C 2 + (P- z)  21 

3. T h e  Th e rma l -E l a s t i c l t y  P rob lem.  Let us consider the equilibrium equations in displacements 
for a thermosens i t ive  body  [11] 

1 1 00  
"-'v2up - ~ up + 1 - 2v Op 

H e r e  

2(1 + v) 0@ 1 00 2(1 + v) O@ (3.1) 
1 - 2 v  v2 r 1-2  = 1-2  

T 
'~(T) = / v~'(T')dT', 

To 
(3.2) 

0 = Oup/i)p+ u/p + o0ur up = ur/a, ur = u,/a, ur and u, are the components of the displacement vector 
in the r and the z axis directions, and v is Poisson's coefficient. 

The partial solution of the thermal-elasticity equations (3.1) is written as [12] 

Op' - 0(' 
where the thermal elastic potential F and the function ~ (3.2) satisfy the equation 

V 2 f  = flk~ [# = a0(1 + v)/(1 - v)]. (3.4) 

The stresses a ~  ) and a~) corresponding to the function F a r e  determined from the formulas [12] 

(~t is the displacement modulus). 

The solution of Eq. (3.4) satisfying the descending conditions as r + ~2 ~ oo has the form 

OO OO 

F(p, ~) J Jo(sp)ds J ~(s, y)sinh [s(y -~)1 dy, (3.6) # 
0 r 

where 
O 0  

~(s, y) = / pq~(p, y)Jo(sp) dp. (3.7) 
o 

Substituting the function F (3.6) into relations (3.5), we find 
O~ Or OQ OO 

0 0 0 0 

for ( = 0, i.e., the half-space surface is not free. Therefore, let us consider the additional problem of the effect 
on the surface ~" = 0 of the forces initiating stresses (denoted by subscript 2) such that 
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The stress state caused by the forces distributed axisymmetrically over the surface of the elastic half- 
space is defined by the Love function L [13] from the solution of the biharmonic equation 

V2V2L = 0. (3.10) 

The vertical displacements u~ 2) and the stresses a ~  ) and a (2) 0r are related to the function L by 

u ~  2) _ l [2(l_,)V2L_O2L l a(2)_ 2# 0 02L l 
1 -- 2. -O~J' r162 1 : 2 .  0r [(2 - .)V2L - 0r , 

a(2) 2p 0 [ 02L] 
"( --"= 1 - - 2 .  Op ( 1 - u ) V 2 L - - - - ~ I .  

(3.11) 

The general solution of Eq. (3.10) decreasing as p ~ oo or r --* oo has the form 
OO 

L = / s[Al(s) + (A2(s)] e-SCJo(sp) ds. (3.12) 
o 

Substituting L (3.12) into Eqs. (3.11), we obtain 

u~2)= 1 -12. f (3.13) 
0 
OO 

a(2)(; = 1 --2"2. / s3{s[Al(s)  + (As(s)] + (1 - 2v)A2(s)} e-SCJo(sp)ds; (3.14) 
0 

OO 

a(2)'r = 1 --2P2. / sZ{s[Al(s) + ~A2(s)] - 2-A2(s)} e-sCJl(sp) as. (3.15) 
0 

From boundary conditions (3.9), taking into account formulas (3.8), (3.14), and (3.15), we find 

Al(s) = - ( 1 -  2u)fls-2 [ (1 -  2 . ) f  ~(s, ()cosh(s()d( + 2. f ~(s, ~')sinh (sr d~'], 
o o 

A2(s) = (1 - 2.) fls -1 f ffl(s, r e -sr d(. 
0 

Then, from relations (3.3), (3.6), and (3.13) we obtain the following expression for the vertical displacements 
of the thermosensitive half-space surface heated by the frictional heat flux (1.1): 

utr u~U(p,O)+ u~2)(p, 0 )=  --2(1 + - ) a 0 / s J o ( s p ) d s / ~ ( s ,  ( )e  - 'r  d(. (3.16) 
o o 

Substituting the expression for the transformant ~ (3.7) into Eq. (3.16) and taking into account (3.2), we 
obtain 

CO OO ~ T 

u~h(p) : - 2 ( 1  +e)aofsJo(sp)ds /e-~r  '. (3.17) 
0 0 0 T O 

Since 

(3.1s) 

T T 
f c~*(T')dT'= O(T)+/[a*(T')-  K*(T')ldT', 
TO TO 

where t} e function �9 is given by (2.8), equality (3.17) is rewritten in the form 
th u~h(p) = --bfvau~h(p)- 2(1 + .)c~0ur ), p /> 0. 
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Here 
c~ 1 

= ] , - ' J 0 ( , : )  d,/,p d,, 
o o 

oo oo ~ T 

0 0 0 To 

(3.19) 

(3.20) 

and 6 = a0(1 + u)/Ko is the coefficient of thermal deformation [1]. 
The first term in formula (3.18) determines the solution of the thermal-elasticity boundary-layer 

problem considered for constant (temperature-independent) properties of the half-space material [2]. Below, 
this problem will be called linear. The second term in formulas (3.18) introduces a correction due to the 
thermosensitivity of the material. 

From (3.20) it follows that when the equality a*(T) = K*(T) is satisfied, the vertical displacement 
ut~h2(p) = 0 and the expression for utah(p) wilt be the same as that in the corresponding linear problem. For 
a*(T) > K*(T), the thermal distortion of the body surface increases compared to the linear case, and for 
a*(T) < K*(T), it decreases. 

We transform relation (3.20) to a more convenient form for applications. Integration by parts yields 
co  oo T 

0 0 T O 

OO OO OO 

o o o O~ K * ( T )  dx .  (3.21) 

Taking into account the value of integral (2.9), from (3.21) we find 

r(=,0) 
. , t g [ A ( p , O , x ) ]  

, =  p ~ x  
o To 

O 0  OO 

o o 2 + (p + x)2 o---( 

where 0~/0r  is defined by formula (2.12). 
4. The  Contac t  P rob lem.  Write the condition of contact between the sphere and the fixed base as: 

/,2 (o < : <~ I). (4.1) ue((p) A- u~h(p) = A- ~-~ 

Here u~ = u~/a is the dimensionless normal displacement of the sphere points caused by the mechanical 
load, u~ h is the thermal deformation due to frictional heat generation [defined by relations (3.18), (3.19), and 
(3.22)], and A is the vertical displacement of the remote point on the sphere. The displacement u~ has the 
form [14] 

1 

~ ( p )  = 2(1 - , )  X x, (x)  K[~(:, o, x)] dx, , >~ o. (4.2) 
r# p + x  

o 

Substituting the displacements u~ (4.2) and u~ h (3.18) into condition (4.1) yields the nonlinear integral 
equation with respect to the contact pressure p(p). To determine A we use the condition of equilibrium. 

1 

-- / pp(p) dp - P (4.3) 
2~-a 2" 

0 
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Finding the exact solution to the nonlinear integral equation is a cumbersome task, complicated by 
the fact that  the radius of the contact area a is not known a priori. Therefore, in [15, 16], we propose the 
following technique for constructing an approximate solution of the contact problems. The contact pressure 
is written in the form 

p(p) = po{d + (5/4)(3 - 2d)p2}~/1 - p2, 0 ~< p ~< 1, p0 = P/(Tra2), (4.4) 

where the unknown parameter is d = p(O)/po. We note that  the pressure distribution (4.4) exactly satisfies 
the equilibrium condition (4.3). 

Substituting p(p) (4.4) into (4.2) and integrating, we find 

P 1 ( 1 - 1 p  2) - ~-~ ( 3 -  2d) 3 p4)},  (4.5) u ~ ( p ) = ~ 7 { _ ~ ( 1 5 _ 6 d )  15 ( l__p2 + 

where 7 = (1 - U)/l~. 
The normal displacement of the sphere surface due to frictional heating is approximated by the fourth- 

order polynomial 

riCh(p) '~ limb(p) = ItCh(0) + Clp  2 ...I- C2p 4. (4.6) 

The coefficients Ci (i = 1, 2) are determined from the physical conditions 

1 
itch(0) -- ~h(1)  ---- Vl, f [ l ~ h ( p ) -  l~h(l)lfl d,o -- g2, (4.7) 

0 
where 

8 f v P  
~a 

U (1) - 2(1 + u)ot0V! 2), i --~ 1, 2, 

1 

- = - ur pdp, ur j = 1, (4.8) vA~o(0) v,- = [~o(P)  2, 
0 

VI = ~ a 2 / p, I/2 = 1, 

th (j = 1 2) is found from formulas (3.19) and (3.22). Substituting p(p) from (4.4) into relations (3.19), and ur 
we obtain 

I ( 4  ) 1 (31  in 2 ) ( 3 _ 2 d ) ,  U(1) d 1 
u} I) = 5 ~ - In 2 ~ + 6 ~30 = 2-~ + ~ (3 - 2~). 

Taking into account formulas (2.4), (2.11), (2.12), (3.19), (3.22), and (4.4), from relations (4.6)-(48) we have 

6fv - -~Pc! l ) (d) -2( l+u)aoC:2>( fVP,d~ ,  i = 1 , 2 ,  (4.9) C i -  ~'a 

where : 3U} - 12U ;) and = -4U}J)  + 12 U J) (j = 1, 2). 
Substituting u~ (4.5) and u~ h (4.6) with allowance for (4.9) into condition (4.1) and comparing the 

coefficients at the same powers of p, we obtain 

) 9d 15 8fva c~l)(d ) -{- 2(1 -{- Y)O~O a2 C~2)( fVP,d  _ , 
32 64 + r7 7P \aKo 2PR7 (4.10) 

2(1 + u)c~oa 2 r.,(2)yfvP d" ~ 8fva C~l)(d) + 0. 45 (3 - 2d) + = 
512 7r 7 7P  'J2 ~,aKo' .] 

Denote 

ao = a/aH, al = (1 + v)aoa~/TP, a2 = fvP/aHKo,  (4.11) 
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Fig. 1 

TABLE 1 

1 . 0 1 8 8 6  

- 7 . 6 2 9  80  �9 10 - 4  

3 . 4 4 5  I 0 . 1 0  - r  

- 7 . 7 6 8  78  �9 10 - I 1  

7 . 0 3 6  91 �9 10 - I s  

K *  

2 5 . 0  

1 . 0 0 5  39  

3 . 6 1 7 4 5  �9 10 - 4  

1 . 1 0 8 4 8  �9 10 - r  

2 . 4 1 1  02  �9 10 - I ~  

- 1 . 0 9 8  51 �9 10 - 1 3  

where a~ = 3PR7 /8  
a s  

is the radius of the contact area in the Hertz problem [5]. Then Eqs. (4.10) are written 

32 64 + -a~ + 2a2~ ' = -~ a~ 

1 (4.12) 
45 (3 - 2d) + ) ( d ) ,  2 O OlC  d = o. 

512 ~r 

Thus, we arrive at a system of two nonlinear equations in a0 and d. The input parameters of the 
problem are the quantities al and u2 (4.11), which have dimensions [~ and [~ respectively. We note 
that the product ala2 is the only dimensionless input parameter of the corresponding linear problem [1 ,  2] .  

For calculations, it is convenient to specify the parameters a0 and a2 and assume that the quantities 
al and d are to be sought. Then, the second equation o f  ( 4 . 1 2 )  leads to 

45(2d - 3)/512 
a l  = + d ). (4.13) 

Substitution of al (4.13) into the first equation of (4.12) yields one nonlinear equation for d. 

We note that  setting C! 2) -- 0 (i -- 1, 2) in Eqs. (4.12), we obtain a solution of the corresponding linear 
problem [1] for which d = 1.91 and aoala2 - 2.01 as P --~ oo. The exact value of the limiting (as P -~ oo) 
radius of the contact area in the linear problem was found in [2]: a~ = 2/(aya2). Thus, the approximation 
of the contact pressure in the form (4.4) gives an approximate solution that differs slightly from the exact 
solution. 

5. N u m e r i c a l  Ana lys i s .  We assume that  the material of the thermosensitive sphere is graphite, for 
which K0 = 79.8 W / (m-  K). The temperature dependence of the function K* (1.2) obtained in [17] is shown 
in Fig. 1. Approximation of these results by the le~t-square method with an absolute error not exceeding 3% 
ha~ the form 4 

K*(T)  = ~_~ k~T i 
i = 0  

(the coefficients ki are given in Table 1). The linear thermal expansion coefficient a(T)  was assumed to be 
constant [a*(T) = 1]. 

To determine the temperature T from the Kirchhoff variable �9 (2.4) we obtain the polynomial (with 
an absolute error not exceeding 1%) dependence 

5 

i=O 

The values of the coefficients ~z are also given in Table 1. 

1 5 6  
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The dependence of the quanti ty ao I = aH/a, which is the reverse of the dimensionless radius of the 
contact area a0 (4.11), on the parameter b = ala2 for two values of a2 (4.11) is shown in Fig. 2. At b = 0, 
there is no frictional heating: a = all. In the linear problem (the dashed curve), an increase in the parameter 
b leads to a decrease in the contact area and makes the radius tend to its critical value a~ = 2/b (the dotted 
curve). It can be seen that even for b > 6, the actual value of the contact-area radius can be replaced by the 
limiting value a~. The influence of the thermosensitivity on the size of the contact area is manifested primarily 
in the fact that  for a fixed input parameter  b, the contact-circle radius is substantially smaller than that in 
the linear problem. This difference increases with increase in b or a2 for a fixed b. In the nonlinear version 
of the problem, the contact-area radius does not tend to a certain limiting value within the range of input 
parameters considered. 

The quantity d (the ratio of the pressure at the center of the contact area to its mean value) as a 
function of the parameter b for two values of a2 is shown in Fig. 3. In the linear problem (the dashed curve), 
an increase in b leads to an increase in d and for b > 6, one can set d = 1.91. In the case of a thermosensitive 
material, d increases with b but does not reach the limiting value. For fixed b, the value of d is the larger, the 
larger the parameter a2. Thus, the influence of thermosensitivity shows up as an increase in the maximum 
contact pressure and localization of contact stresses in the central part of the contact area. 

The temperature T as a function of the parameter b (the solid curves) for a2 -- 200 and 400~ at the 
center of the contact circle (p = 0, ( = 0) is shown in Fig. 4. The dashed curves correspond to values of 
the Kirchhoff function q~ (2.11). As should be expected, a decrease in the radius of the contact area and the 
increase in pressure in its central part lead to a sharp rise in temperature in the central part of the contact 
circle. 
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The distribution of the surface contact temperature (the solid curves) at a2 -" 200~ for two values 
of a0 is shown in Fig. 5. The dashed curves show the distribution of the Kirchhoff function �9 (2.11). The 
maximum temperature is attained at the center of the area, decreasing rapidly with distance p. In this case, 
the thermosensitivity effect decreases sharply with distance from the center of the contact area. 

The analysis performed showed that the influence of thermosensitivity on the contact characteristics 
should be taken into account at temperatures of about 500~ and higher. We note that the effect of the 
heat-generation power f v P  (the parameter a2) on the same characteristics is significant compared to that in 
the linear problem. 
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